Problem Set 4 solution manual

Exercise. A4.1

First recall that $D_{n}=\left\{1, r, r^{2}, \ldots, r^{n-1}, s, r s, \ldots, r^{n-1} s\right\}$, and $A_{n}=\left\{\sigma \in S_{n} \mid \operatorname{sign}(\sigma)=+1\right\}$. So our goal is to check which of the elements of D_{n} have a sign of +1 .
We know that $r=(123 \ldots n)$, so sign of $r=\left\{\begin{array}{ll}-1 & n \text { even } \\ +1 & n \text { odd }\end{array}\right.$,
and $s= \begin{cases}\text { for } n=4 k & s=(1 \quad n)(2 n-1) \ldots(2 k \quad 2 k+1) \\ \text { for } n=4 k+2 & s=(1 n)(2 n-1) \ldots(2 k+1 \quad 2 k+2) \\ \text { for } n=4 k+1 & s=\left(\begin{array}{ll}1 & n\end{array}\right)(2 n-1) \ldots(2 k 2 k+2) \\ \text { for } n=4 k+3 & s=\left(\begin{array}{ll}1 & n\end{array}\right)(2 n-1) \ldots(2 k+12 k+3)\end{cases}$
So we conclude that $\operatorname{sign}(s)= \begin{cases}\text { for } n=4 k & \operatorname{sign}(s)=+1 \\ \text { for } n=4 k+2 & \operatorname{sign}(s)=-1 \\ \text { for } n=4 k+1 & \operatorname{sign}(s)=+1 \\ \text { for } n=4 k+3 & \operatorname{sign}(s)=-1\end{cases}$
Then we can know the elements of $A_{n} \cap D_{n}$ according to the value of n, and we conclude that:
$A_{n} \cap D_{n}= \begin{cases}\text { for } n=4 k & A_{n} \cap D_{n}=\left\{1, r^{2}, r^{4}, . ., r^{n-2}, s, r^{2} s, \ldots, r^{n-2} s\right\} \\ \text { for } n=4 k+2 & A_{n} \cap D_{n}=\left\{1, r^{2}, r^{4}, . ., r^{n-2}, r s, r^{3} s, \ldots, r^{n-1} s\right\} \\ \text { for } n=4 k+1 & A_{n} \cap D_{n}=\left\{1, r, r^{2}, . ., r^{n-1}, s, r s, \ldots, r^{n-1} s\right\}=D_{n} \\ \text { for } n=4 k+3 & A_{n} \cap D_{n}=\left\{1, r, r^{2}, . ., r^{n-1}\right\}\end{cases}$

Exercise. A4.2

a- Required to prove that $\operatorname{det} A=\operatorname{det} A^{t}$
First we show that $\operatorname{sign}(\sigma)=\operatorname{sign}\left(\sigma^{-1}\right)$, to prove this we need to notice that $\sigma \cdot \sigma^{-1}=1$ and $\operatorname{sign}(\sigma)=+1$, then $\operatorname{sign}(\sigma) \cdot \operatorname{sign}\left(\sigma^{-1}\right)=1$, which implies that $\operatorname{sign}(\sigma)=\operatorname{sign}\left(\sigma^{-1}\right)$.
Now back to the problem:

$$
\operatorname{det} A=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{n \sigma(n)}
$$

Now notice that for every i we have $\sigma(i)=j$ for some unique $j \Longrightarrow a_{i \sigma(i)}=a_{\sigma^{-1}(j) j}$, and this is true for all $1 \leq i \leq n$ then we can deduce that $a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{n \sigma(n)}=a_{\sigma^{-1}(1) 1} a_{\sigma^{-1}(2) 2} \ldots a_{\sigma^{-1}(n) n}$. And since $\left\{\sigma \mid \sigma \in S_{n}\right\}=\left\{\sigma^{-1} \mid \sigma \in S_{n}\right\}$.
We deduce that:

$$
\begin{aligned}
& \operatorname{det} A=\sum_{\sigma^{-1} \in S_{n}} \operatorname{sign}\left(\sigma^{-1}\right) a_{\sigma^{-1}(1) 1} a_{\sigma^{-1}(2) 2} \ldots a_{\sigma^{-1}(n) n} \\
& =\sum_{\sigma^{-1} \in S_{n}} \operatorname{sign}\left(\sigma^{-1}\right) a_{\sigma^{-1}(1) 1} a_{\sigma^{-1}(2) 2} \ldots a_{\sigma^{-1}(n) n} \\
& =\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) a_{\sigma(1) 1} a_{\sigma(2) 2} \ldots a_{\sigma(n) n}
\end{aligned}
$$

Now let $A^{t}=\left(b_{i j}\right)$ with $b_{i j}=a_{j i}$, then:
$\operatorname{det} A^{t}=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) b_{1 \sigma(1)} b_{2 \sigma(2)} \ldots b_{n \sigma(n)}$
$=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) a_{\sigma(1) 1} a_{\sigma(2) 2} \ldots a_{\sigma(n) n}$
$=\operatorname{det} A$.
b- A is an upper triangular $\Longrightarrow a_{i j}=0$ when evere $i>j$.
But for evey $\sigma \neq 1 \in S_{n} \exists i$ such that $i>\sigma(i)$.
Then let $\sigma \neq 1$ we will get $a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{n \sigma(n)}=0$ since it contains at least one element $a_{i \sigma(i)}$ with $i>\sigma(i)$ which implies $a_{i \sigma(i)}=0$.
Then the only term that appears in the sum over $\sigma \in S_{n}$ is for $\sigma=1 \Longrightarrow \operatorname{det} A=$ $\operatorname{sign}(1) a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{n \sigma(n)}$ with $\sigma=1, \Longrightarrow \operatorname{det} A=a_{11} a_{22} \ldots a_{n n}$.
c- Consider that the two interchanged columns are the $q^{\text {th }}$, and the $p^{\text {th }}$, and consider $\tau=(p q)$, and let $B=\left(b_{i j}\right)$ be the matrix A after we interchange the two columns, and note that $a_{i j}=b_{i j}$ for all $j \notin\{p, q\}$, and $a_{i p}=b_{i q}, a_{i q}=b_{i p}$
let $H=\{1, \tau\}$ then we get $\left\{\tau o \sigma \mid \sigma \in S_{n}\right\}=\underset{\sigma \in S_{n}}{\cup} \sigma H=\left\{\sigma \mid \sigma \in S_{n}\right\}$ since the set of cosets of H forms a partition of S_{n}.
Then $\operatorname{det} B=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) b_{1 \sigma(1)} b_{2 \sigma(2)} \ldots b_{n \sigma(n)}$
$=\underset{\tau o \sigma \in S_{n}}{\sum} \operatorname{sign}(\tau o \sigma) b_{1 \tau \sigma \sigma(1)} b_{2 \tau \sigma \sigma(2)} \cdots b_{\text {nтoб }(n)}$
$=\sum_{\tau o \sigma \in S_{n}} \operatorname{sign}(\tau) \operatorname{sign}(\sigma) b_{1 \operatorname{\tau o\sigma }(1)} b_{2 \tau \sigma \sigma(2)} \ldots b_{\text {nтoб }(n)}$
$=-\sum_{\tau \circ \sigma \in S_{n}} \operatorname{sign}(\sigma) b_{1 \tau \sigma \sigma(1)} b_{2 \tau \sigma \sigma(2)} \ldots b_{\text {nтoб }(n)}$
Choose any $\sigma \in S_{n}$, and suppose $\sigma(i)=p$, and $\sigma(j)=q$ for some $\left.i, j \in\{1, \ldots, n\}\right)$
Then $\begin{cases}\text { for } s \neq i, s \neq j & \text { we have } b_{\text {sTo }(s)}=b_{s \sigma(s)}=a_{\text {s }(s)} . \\ \text { for } s=i, & \text { we have } b_{\text {iroб }(i)}=b_{i \tau(p)}=b_{i q}=a_{i p}=a_{i \sigma(i)} . \\ \text { for } s=j, & \text { we have } b_{j \tau o \sigma(j)}=b_{j \tau(q)}=b_{j p}=a j q=a_{j \sigma(j)} .\end{cases}$
Then

$$
\begin{aligned}
& \operatorname{det} B=-\sum_{\tau o \sigma \in S_{n}} \operatorname{sign}(\sigma) b_{1 \tau o \sigma(1)} b_{2 \tau \sigma \sigma(2)} \ldots b_{n \tau o \sigma(n)} \\
& =-\sum_{\tau o \sigma \in S_{n}} \operatorname{sign}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2) \ldots} \ldots a_{n \sigma(n)} \\
& =-\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2) \ldots} \ldots a_{n \sigma(n)} \\
& =-\operatorname{det} A .
\end{aligned}
$$

d- Let A be such that A has two equal columns, then if we interchange those two columns of A we will get a matrix $A^{\prime}=A$.
Moreover, $\operatorname{det} A^{\prime}=-\operatorname{det} A$, but since $A=A^{\prime}$ then also $\operatorname{det} A^{\prime}=\operatorname{det} A$, then we get $\operatorname{det} A=-\operatorname{det} A$, which implies $\operatorname{det} A=0$.

Section. 9

Exercise. 7

$\sigma=(145)(78)(257)$

- $\sigma=\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 3 & 5 & 8 & 6 & 2 & 7\end{array}\right]$

The backward pairs : $(1,2),(1,3),(1,7),(3,7),(4,7),(5,6),(5,7),(5,8),(6,7)$.
So $N_{\sigma}=9 \Longrightarrow \operatorname{sign}(\sigma)=(-1)^{9}=-1$.

- $\sigma=(15)(14)(78)(27)(25)$
$\Longrightarrow \operatorname{sign}(\sigma)=(-1)^{5}=-1$
- $\sigma=(145872)$ so σ is a k-cycle with $\mathrm{k}=6$
$\Longrightarrow \operatorname{sign}(\sigma)=(-1)^{5}=-1$.
Exercise. 10

$$
\sigma=\left[\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 2 & 6 & 3 & 7 & 4 & 5 & 1
\end{array}\right]
$$

- The backward pairs : $(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,8),(3,4),(3,6),(3,7)$, $(3,8),(4,8),(5,6),(5,7),(5,8),(6,8),(7,8)$. So $N_{\sigma}=18 \Longrightarrow \operatorname{sign}(\sigma)=(-1)^{18}=+1$.
- $\sigma=(75)(34)(36)(18)$
$\Longrightarrow \operatorname{sign}(\sigma)=(-1)^{4}=+1$
- $\sigma=(18)\left(\begin{array}{ll}3 & 6\end{array}\right)(57)$ so σ is a product of 3 disjoint cycles $\tau_{1}, \tau_{2}, \tau_{3}$ with $\operatorname{sign}\left(\tau_{1}\right)=-1, \operatorname{sign}\left(\tau_{2}\right)=+1, \operatorname{sign}\left(\tau_{3}\right)=-1$ $\Longrightarrow \operatorname{sign}(\sigma)=(-1)(+1)(-1)=+1$.

Exercise. 31
A is an infinite set, H is a subset of S_{A} such that the elements of H moves only a finite number of elements.

- The identity element of S_{A} moves no elements of A, \Longrightarrow it moves a finite number of elements $\Longrightarrow 1_{A} \in H$.
- Let σ_{1}, and $\sigma_{2} \in H$, then since σ_{1}, and σ_{2} moves only a finite number of elements of A then they can be written as the finite product of cycles of finite order, $\Longrightarrow \sigma_{1} \sigma_{2}$ is the finite product of cycles of finite order, then $\sigma_{1} \sigma_{2} \in H$.
- If σ moves only a finite number of element then write σ as the finite product of disjoint cycles of finite order, then σ has a finite order, let $n=$ order of σ, this implies that $\sigma^{-1}=\sigma^{n-1}$ which is the finite product of cycles of finite order, $\Longrightarrow \sigma^{-1} \in H$.
$\Longrightarrow H$ is a subgroup of S_{A}.
Exercise. 32

We have K is a subset of S_{A} such that every element in K moves at most 50 elements of A. Then consider $\sigma_{1}=\left(\begin{array}{l}1 \\ 2\end{array} \ldots 50\right)$, and $\sigma_{2}=(50 \ldots 60)$. Then $\sigma_{1} \sigma_{2}=\left(\begin{array}{ll}1 & 2\end{array} \ldots 50\right)(50 \ldots 60)=\left(\begin{array}{ll}1 & 2\end{array} \ldots 60\right)$, which clearly moves 60 elements, $\Longrightarrow \sigma_{1} \sigma_{2} \notin H$.
So H is not closed under the operation of the group. $\Rightarrow H$ is not a subgroup of S_{A}.

Section. 10
Exercise. 2

The cosets of $4 \mathbb{Z}$ in $2 \mathbb{Z}$ are :
$a+4 \mathbb{Z}$ for any $a \in 2 \mathbb{Z}$, but any $a \in 2 \mathbb{Z}, a=4 k$, or $a=4 k+2$
\Longrightarrow for $a=4 k$ we have one coset which is $4 \mathbb{Z}$, and for $a=4 k+2$ we have another coset which is $2+4 \mathbb{Z}$.

Exercise. 4

$$
\begin{aligned}
& \text { The cosets of }<4>\text { in } \mathbb{Z}_{12} \text { are : } \\
& 0+<4>=<4>=\{0,4,8\}=4+<4>=8+<4>. \\
& 1+<4>=\{1,5,9\}=5+<4>=9+<4> \\
& 2+<4>=\{2,6,10\}=6+<4>=10+<4> \\
& 3+<4>=\{3,7,11\}=7+<4>=11+<4>
\end{aligned}
$$

Exercise. 6

The left cosets of $H=\left\{\rho_{0}, \mu_{2}\right\}$ in D_{4} are:
$\rho_{0} \cdot H=\mu_{2} \cdot H=\left\{\rho_{0}, \mu_{2}\right\}$.
$\rho_{1} \cdot H=\delta_{2} \cdot H=\left\{\rho_{1}, \delta_{2}\right\}$.
$\rho_{2} \cdot H=\mu_{1} \cdot H=\left\{\rho_{2}, \mu_{1}\right\}$.
$\rho_{3} \cdot H=\delta_{1} \cdot H=\left\{\rho_{3}, \delta_{1}\right\}$.

Exercise. 7

The right cosets of $H=\left\{\rho_{0}, \mu_{2}\right\}$ in D_{4} are:
$H . \rho_{0}=H . \mu_{2}=\left\{\rho_{0}, \mu_{2}\right\}$.
$H . \rho_{1}=H . \delta_{1}=\left\{\rho_{1}, \delta_{1}\right\}$.
$H . \rho_{2}=H . \mu_{1}=\left\{\rho_{2}, \mu_{1}\right\}$.
$H . \rho_{3}=H . \delta_{2}=\left\{\rho_{3}, \delta_{2}\right\}$.
So the left cosets are not equal to the right cosets.
Exercise. 8

	ρ_{0}	μ_{2}	ρ_{1}	δ_{2}	ρ_{2}	μ_{1}	ρ_{3}	δ_{1}
ρ_{0}	ρ_{0}	μ_{2}	ρ_{1}	δ_{2}	ρ_{2}	μ_{1}	ρ_{3}	δ_{1}
μ_{2}	μ_{2}	ρ_{0}	δ_{1}	ρ_{3}	μ_{1}	ρ_{2}	δ_{2}	ρ_{1}
ρ_{1}	ρ_{1}	δ_{2}	ρ_{2}	μ_{1}	ρ_{3}	δ_{1}	ρ_{0}	μ_{2}
δ_{2}	δ_{2}	ρ_{1}	μ_{2}	ρ_{0}	δ_{1}	ρ_{3}	μ_{1}	ρ_{2}
ρ_{2}	ρ_{2}	μ_{1}	ρ_{3}	δ_{1}	ρ_{0}	μ_{2}	ρ_{1}	δ_{2}
μ_{1}	μ_{1}	ρ_{2}	δ_{2}	ρ_{1}	μ_{2}	ρ_{0}	δ_{1}	ρ_{3}
ρ_{3}	ρ_{3}	δ_{1}	ρ_{0}	μ_{2}	ρ_{1}	δ_{2}	ρ_{2}	μ_{1}
δ_{1}	δ_{1}	ρ_{3}	μ_{1}	ρ_{2}	δ_{2}	ρ_{1}	μ_{2}	ρ_{0}

So we can deduce form the table directly that we don't have a coset group.

Exercise. 9

The left cosets of $H=\left\{\rho_{0}, \rho_{2}\right\}$ in D_{4} are:
$\rho_{0} \cdot H=\rho_{2} \cdot H=\left\{\rho_{0}, \rho_{2}\right\}$.
$\rho_{1} \cdot H=\rho_{3} \cdot H=\left\{\rho_{1}, \rho_{3}\right\}$.
$\mu_{1} \cdot H=\mu_{2} \cdot H=\left\{\mu_{1}, \mu_{2}\right\}$.
$\delta_{1} \cdot H=\delta_{2} \cdot H=\left\{\delta_{1}, \delta_{2}\right\}$.

Exercise. 10

The right cosets of $H=\left\{\rho_{0}, \rho_{2}\right\}$ in D_{4} are:
$H . \rho_{0}=H . \rho_{2}=\left\{\rho_{0}, \rho_{2}\right\}$.
$H . \rho_{1}=H . \rho_{3}=\left\{\rho_{1}, \rho_{3}\right\}$.
$H . \mu_{1}=H . \mu_{2}=\left\{\mu_{1}, \mu_{2}\right\}$.
$H . \delta_{1}=H . \delta_{2}=\left\{\delta_{1}, \delta_{2}\right\}$.
So the left cosets are equal to the right cosets.

Exercise. 11

	ρ_{0}	ρ_{2}	ρ_{1}	ρ_{3}	μ_{1}	μ_{2}	δ_{1}	δ_{2}
ρ_{0}	ρ_{0}	ρ_{2}	ρ_{1}	ρ_{3}	μ_{1}	μ_{2}	δ_{1}	δ_{2}
ρ_{2}	ρ_{2}	ρ_{0}	ρ_{3}	ρ_{1}	μ_{2}	μ_{1}	δ_{2}	δ_{1}
ρ_{1}	ρ_{1}	ρ_{3}	ρ_{2}	ρ_{0}	δ_{1}	δ_{2}	μ_{2}	μ_{1}
ρ_{3}	ρ_{3}	ρ_{1}	ρ_{0}	ρ_{2}	δ_{2}	δ_{1}	μ_{1}	μ_{2}
μ_{1}	μ_{1}	μ_{2}	δ_{2}	δ_{1}	ρ_{0}	ρ_{2}	ρ_{3}	ρ_{1}
μ_{2}	μ_{2}	μ_{1}	δ_{1}	δ_{2}	ρ_{2}	ρ_{0}	ρ_{1}	ρ_{3}
δ_{1}	δ_{1}	δ_{2}	μ_{1}	μ_{2}	ρ_{1}	ρ_{3}	ρ_{0}	ρ_{2}
δ_{2}	δ_{2}	δ_{1}	μ_{2}	μ_{1}	ρ_{3}	ρ_{1}	ρ_{2}	ρ_{0}

And this is a coset group with the following table:

	red	blue	green	black
red	red	blue	green	black
blue	blue	red	black	green
green	green	black	red	blue
black	black	green	blue	red

And since for every x in this group we have $x^{2}=$ identity of the group (in this case "red"), this group is isomorphic to the klein- 4 group V.

Exercise. 30

False, Here is a counter example:
Let $G=S_{3}$ and let $H=\{i d,(23)\}, a=(123), b=(12)$.
Then $a . H=b . H=\{(123)(12)\}$
While $H . a=\{(123)(13)\} \neq H . b$ since $H . b=\{(132)(12)\}$.
Exercise. 31

If H.a =H.b Now since, $H . b=\{h . b \mid h \in H\}$ and since $e \in H$ then we get $b \in H . b=H . a$ $\Longrightarrow b \in H . a$.

Exercise. 32
True, since:
We know that it is enough to show that there intersection is non-empty:
Now since $a . H=b . H \Longrightarrow b \in a . H$ (similar to above argument) $\Longrightarrow b=a . h$ for some $h \in H$ then $b^{-1}=h^{-1} \cdot a^{-1}$
$\Longrightarrow b^{-1} \in H . a^{-1}$, but $b^{-1} \in H . b^{-1} \Longrightarrow H . a^{-1}=H . b^{-1}$
Exercise. 33

False, and here is a counter example:
Let $G=D_{4}$, and let $H=\left\{\rho_{0}, \mu_{2}\right\}$.
Let $a=\rho_{1}$ then $a^{2}=\rho_{2}$, and $b=\delta_{2}$ then $b^{2}=\rho_{0}$,
we have $a \cdot H=b \cdot H=\left\{\rho_{1}, \delta_{2}\right\}$, while $a^{2} \cdot H=\left\{\rho_{2}, \mu_{1}\right.$ different form $b^{2} \cdot H=\left\{\rho_{0}, \mu_{2}\right\}$.

