Math 241

Problem Set 4 solution manual

Exercise. A4.1

First recall that $D_n = \{1, r, r^2, ..., r^{n-1}, s, rs, ..., r^{n-1}s\}$, and $A_n = \{\sigma \in S_n \mid sign(\sigma) = +1\}$. So our goal is to check which of the elements of D_n have a sign of +1.

We know that
$$r = (123...n)$$
, so sign of $r = \begin{cases} -1 & n \text{ even} \\ +1 & n \text{ odd} \end{cases}$,
and $s = \begin{cases} for \ n = 4k & s = (1 \ n)(2 \ n - 1)...(2k \ 2k + 1) \\ for \ n = 4k + 2 & s = (1 \ n)(2 \ n - 1)...(2k + 1 \ 2k + 2) \\ for \ n = 4k + 1 & s = (1 \ n)(2 \ n - 1)...(2k \ 2k + 2) \\ for \ n = 4k + 3 & s = (1 \ n)(2 \ n - 1)...(2k + 1 \ 2k + 3) \end{cases}$
So we conclude that $\operatorname{sign}(s) = \begin{cases} for \ n = 4k & sign(s) = +1 \\ for \ n = 4k + 2 & sign(s) = -1 \\ for \ n = 4k + 3 & sign(s) = -1 \\ for \ n = 4k + 3 & sign(s) = -1 \end{cases}$

Then we can know the elements of $A_n \cap D_n$ according to the value of n, and we conclude that:

$$A_n \cap D_n = \begin{cases} for \ n = 4k & A_n \cap D_n = \{1, r^2, r^4, \dots, r^{n-2}, s, r^2s, \dots, r^{n-2}s\} \\ for \ n = 4k + 2 & A_n \cap D_n = \{1, r^2, r^4, \dots, r^{n-2}, rs, r^3s, \dots, r^{n-1}s\} \\ for \ n = 4k + 1 & A_n \cap D_n = \{1, r, r^2, \dots, r^{n-1}, s, rs, \dots, r^{n-1}s\} = D_n \\ for \ n = 4k + 3 & A_n \cap D_n = \{1, r, r^2, \dots, r^{n-1}\} \end{cases}$$

Exercise. A4.2

a- Required to prove that $det A = det A^t$

First we show that $sign(\sigma) = sign(\sigma^{-1})$, to prove this we need to notice that $\sigma \cdot \sigma^{-1} = 1$ and $sign(\sigma) = +1$, then $sign(\sigma) \cdot sign(\sigma^{-1}) = 1$, which implies that $sign(\sigma) = sign(\sigma^{-1})$.

Now back to the problem:

$$detA = \sum_{\sigma \in S_n} sign(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$

Now notice that for every *i* we have $\sigma(i) = j$ for some unique $j \implies a_{i\sigma(i)} = a_{\sigma^{-1}(j)j}$, and this is true for all $1 \le i \le n$ then we can deduce that $a_{1\sigma(1)}a_{2\sigma(2)}...a_{n\sigma(n)} = a_{\sigma^{-1}(1)1}a_{\sigma^{-1}(2)2}...a_{\sigma^{-1}(n)n}$. And since $\{\sigma \mid \sigma \in S_n\} = \{\sigma^{-1} \mid \sigma \in S_n\}$.

We deduce that:

$$det A = \sum_{\sigma^{-1} \in S_n} sign(\sigma^{-1}) a_{\sigma^{-1}(1)1} a_{\sigma^{-1}(2)2} \dots a_{\sigma^{-1}(n)n}$$

=
$$\sum_{\sigma^{-1} \in S_n} sign(\sigma^{-1}) a_{\sigma^{-1}(1)1} a_{\sigma^{-1}(2)2} \dots a_{\sigma^{-1}(n)n}$$

=
$$\sum_{\sigma \in S_n} sign(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \dots a_{\sigma(n)n}$$

Now let $A^t = (b_{ij})$ with $b_{ij} = a_{ji}$, then: $det A^t = \sum_{\sigma \in S_n} sign(\sigma) b_{1\sigma(1)} b_{2\sigma(2)} \dots b_{n\sigma(n)}$ $= \sum_{\sigma \in S_n} sign(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \dots a_{\sigma(n)n}$ = det A.

b- A is an upper triangular $\implies a_{ij}=0$ when evere i > j.

But for every $\sigma \neq 1 \in S_n \exists i \text{ such that } i > \sigma(i)$.

Then let $\sigma \neq 1$ we will get $a_{1\sigma(1)}a_{2\sigma(2)}...a_{n\sigma(n)} = 0$ since it contains at least one element $a_{i\sigma(i)}$ with $i > \sigma(i)$ which implies $a_{i\sigma(i)} = 0$.

Then the only term that appears in the sum over $\sigma \in S_n$ is for $\sigma = 1 \implies det A = sign(1)a_{1\sigma(1)}a_{2\sigma(2)}...a_{n\sigma(n)}$ with $\sigma = 1, \implies det A = a_{11}a_{22}...a_{nn}$.

c- Consider that the two interchanged columns are the q^{th} , and the p^{th} , and consider $\tau = (p \ q)$, and let $B = (b_{ij})$ be the matrix A after we interchange the two columns, and note that $a_{ij} = b_{ij}$ for all $j \notin \{p, q\}$, and $a_{ip} = b_{iq}$, $a_{iq} = b_{ip}$

let $H = \{1, \tau\}$ then we get $\{\tau o \sigma \mid \sigma \in S_n\} = \bigcup_{\sigma \in S_n} \sigma H = \{\sigma \mid \sigma \in S_n\}$ since the set of cosets of H forms a partition of S_n .

Then
$$detB = \sum_{\sigma \in S_n} sign(\sigma)b_{1\sigma(1)}b_{2\sigma(2)}...b_{n\sigma(n)}$$

 $= \sum_{\tau \sigma \sigma \in S_n} sign(\tau \sigma \sigma)b_{1\tau \sigma \sigma(1)}b_{2\tau \sigma \sigma(2)}...b_{n\tau \sigma \sigma(n)}$
 $= \sum_{\tau \sigma \sigma \in S_n} sign(\tau)sign(\sigma)b_{1\tau \sigma \sigma(1)}b_{2\tau \sigma \sigma(2)}...b_{n\tau \sigma \sigma(n)}$
 $= -\sum_{\tau \sigma \sigma \in S_n} sign(\sigma)b_{1\tau \sigma \sigma(1)}b_{2\tau \sigma \sigma(2)}...b_{n\tau \sigma \sigma(n)}$

Choose any $\sigma \in S_n$, and suppose $\sigma(i) = p$, and $\sigma(j) = q$ for some $i, j \in \{1, ..., n\}$)

Then
$$\begin{cases} for \ s \neq i, \ s \neq j & we \ have \ b_{s\tau o\sigma(s)} = b_{s\sigma(s)} = a_{s\sigma(s)}. \\ for \ s = i, & we \ have \ b_{i\tau o\sigma(i)} = b_{i\tau(p)} = b_{iq} = aip = a_{i\sigma(i)}. \\ for \ s = j, & we \ have \ b_{j\tau o\sigma(j)} = b_{j\tau(q)} = b_{jp} = ajq = a_{j\sigma(j)} \end{cases}$$

Then

$$detB = -\sum_{\substack{\tau o \sigma \in S_n \\ \tau o \sigma \in S_n }} sign(\sigma) b_{1\tau o \sigma(1)} b_{2\tau o \sigma(2)} \dots b_{n\tau o \sigma(n)}$$
$$= -\sum_{\substack{\tau o \sigma \in S_n \\ \sigma \in S_n }} sign(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$
$$= -detA.$$

d- Let A be such that A has two equal columns, then if we interchange those two columns of A we will get a matrix A' = A.

Moreover, detA' = -detA, but since A = A' then also detA' = detA, then we get detA = -detA, which implies detA = 0.

Section. 9

Exercise. 7

 $\sigma = (1 \ 4 \ 5)(7 \ 8)(2 \ 5 \ 7)$

• $\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 3 & 5 & 8 & 6 & 2 & 7 \end{bmatrix}$

The backward pairs : (1,2), (1,3), (1,7), (3,7), (4,7), (5,6), (5,7), (5,8), (6,7). So $N_{\sigma} = 9 \implies \operatorname{sign}(\sigma) = (-1)^9 = -1.$

- $\sigma = (1 \ 5)(1 \ 4)(7 \ 8)(2 \ 7)(2 \ 5)$ $\implies \operatorname{sign}(\sigma) = (-1)^5 = -1$
- $\sigma = (1 \ 4 \ 5 \ 8 \ 7 \ 2)$ so σ is a k-cycle with k=6 $\implies \operatorname{sign}(\sigma) = (-1)^5 = -1.$

Exercise. 10

- The backward pairs : (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (2,8), (3,4), (3,6), (3,7), (3,8), (4,8), (5,6), (5,7), (5,8), (6,8), (7,8). So $N_{\sigma} = 18 \implies \operatorname{sign}(\sigma) = (-1)^{18} = +1.$
- $\sigma = (7 \ 5)(3 \ 4)(3 \ 6)(1 \ 8)$ $\implies \operatorname{sign}(\sigma) = (-1)^4 = +1$
- $\sigma = (1 \ 8)(3 \ 6 \ 4)(5 \ 7)$ so σ is a product of 3 disjoint cycles τ_1, τ_2, τ_3 with $\operatorname{sign}(\tau_1) = -1, \operatorname{sign}(\tau_2) = +1, \operatorname{sign}(\tau_3) = -1$ $\implies \operatorname{sign}(\sigma) = (-1)(+1)(-1) = +1.$

Exercise. 31

A is an infinite set, H is a subset of S_A such that the elements of H moves only a finite number of elements.

- The identity element of S_A moves no elements of A, \implies it moves a finite number of elements $\implies 1_A \in H$.
- Let σ_1 , and $\sigma_2 \in H$, then since σ_1 , and σ_2 moves only a finite number of elements of A then they can be written as the finite product of cycles of finite order, $\implies \sigma_1 \sigma_2$ is the finite product of cycles of finite order, then $\sigma_1 \sigma_2 \in H$.
- If σ moves only a finite number of element then write σ as the finite product of disjoint cycles of finite order, then σ has a finite order, let n =order of σ , this implies that $\sigma^{-1} = \sigma^{n-1}$ which is the finite product of cycles of finite order, $\implies \sigma^{-1} \in H$.

 \implies H is a subgroup of S_A .

Exercise. 32

We have K is a subset of S_A such that every element in K moves at most 50 elements of A. Then consider $\sigma_1 = (1 \ 2 \ \dots \ 50)$, and $\sigma_2 = (50 \ \dots \ 60)$.

Then $\sigma_1 \sigma_2 = (1 \ 2 \dots \ 50)(50 \dots \ 60) = (1 \ 2 \dots \ 60)$, which clearly moves 60 elements, $\implies \sigma_1 \sigma_2 \notin H.$

So H is not closed under the operation of the group. \implies H is not a subgroup of S_A .

Section. 10

Exercise. 2

The cosets of $4\mathbb{Z}$ in $2\mathbb{Z}$ are : $a + 4\mathbb{Z}$ for any $a \in 2\mathbb{Z}$, but any $a \in 2\mathbb{Z}$, a = 4k, or a = 4k + 2 \implies for a = 4k we have one coset which is $4\mathbb{Z}$, and for a = 4k + 2 we have another coset which is $2 + 4\mathbb{Z}$.

Exercise. 4

The cosets of $\langle 4 \rangle$ in \mathbb{Z}_{12} are : $0+\langle 4 \rangle = \langle 4 \rangle = \{0,4,8\} = 4+\langle 4 \rangle = 8+\langle 4 \rangle$. $1+\langle 4 \rangle = \{1,5,9\} = 5+\langle 4 \rangle = 9+\langle 4 \rangle$. $2+\langle 4 \rangle = \{2,6,10\} = 6+\langle 4 \rangle = 10+\langle 4 \rangle$. $3+\langle 4 \rangle = \{3,7,11\} = 7+\langle 4 \rangle = 11+\langle 4 \rangle$.

Exercise. 6

The left cosets of $H = \{\rho_0, \mu_2\}$ in D_4 are: $\rho_0.H = \mu_2.H = \{\rho_0, \mu_2\}.$ $\rho_1.H = \delta_2.H = \{\rho_1, \delta_2\}.$ $\rho_2.H = \mu_1.H = \{\rho_2, \mu_1\}.$ $\rho_3.H = \delta_1.H = \{\rho_3, \delta_1\}.$

Exercise. 7

The right cosets of $H = \{\rho_0, \mu_2\}$ in D_4 are: $H.\rho_0 = H.\mu_2 = \{\rho_0, \mu_2\}.$ $H.\rho_1 = H.\delta_1 = \{\rho_1, \delta_1\}.$ $H.\rho_2 = H.\mu_1 = \{\rho_2, \mu_1\}.$ $H.\rho_3 = H.\delta_2 = \{\rho_3, \delta_2\}.$ So the left cosets are not equal to the right cosets.

Exercise. 8

	$ ho_0$	μ_2	$ ho_1$	δ_2	$ ho_2$	μ_1	$ ho_3$	δ_1
$ ho_0$	$ ho_0$	μ_2	$ ho_1$	δ_2	$ ho_2$	μ_1	$ ho_3$	δ_1
μ_2	μ_2	$ ho_0$	δ_1	$ ho_3$	μ_1	ρ_2	δ_2	ρ_1
ρ_1	ρ_1	δ_2	ρ_2	μ_1	ρ_3	δ_1	$ ho_0$	μ_2
δ_2	δ_2	ρ_1	μ_2	$ ho_0$	δ_1	ρ_3	μ_1	ρ_2
ρ_2	ρ_2	μ_1	ρ_3	δ_1	$ ho_0$	μ_2	ρ_1	δ_2
μ_1	μ_1	ρ_2	δ_2	$ ho_1$	μ_2	$ ho_0$	δ_1	ρ_3
ρ_3	ρ_3	δ_1	$ ho_0$	μ_2	ρ_1	δ_2	ρ_2	μ_1
δ_1	δ_1	ρ_3	μ_1	$ ho_2$	δ_2	$ ho_1$	μ_2	ρ_0

So we can deduce form the table directly that we don't have a coset group.

Exercise. 9

The left cosets of $H = \{\rho_0, \rho_2\}$ in D_4 are: $\rho_0.H = \rho_2.H = \{\rho_0, \rho_2\}.$ $\rho_1.H = \rho_3.H = \{\rho_1, \rho_3\}.$ $\mu_1.H = \mu_2.H = \{\mu_1, \mu_2\}.$ $\delta_1.H = \delta_2.H = \{\delta_1, \delta_2\}.$

Exercise. 10

The right cosets of $H = \{\rho_0, \rho_2\}$ in D_4 are: $H.\rho_0 = H.\rho_2 = \{\rho_0, \rho_2\}.$ $H.\rho_1 = H.\rho_3 = \{\rho_1, \rho_3\}.$ $H.\mu_1 = H.\mu_2 = \{\mu_1, \mu_2\}.$ $H.\delta_1 = H.\delta_2 = \{\delta_1, \delta_2\}.$ So the left cosets are equal to the right cosets.

Exercise. 11

	$ ho_0$	$ ho_2$	ρ_1	$ ho_3$	μ_1	μ_2	δ_1	δ_2
$ ho_0$	$ ho_0$	$ ho_2$	$ ho_1$	$ ho_3$	μ_1	μ_2	δ_1	δ_2
$ ho_2$	$ ho_2$	$ ho_0$	$ ho_3$	$ ho_1$	μ_2	μ_1	δ_2	δ_1
ρ_1	ρ_1	ρ_3	$ ho_2$	$ ho_0$	δ_1	δ_2	μ_2	μ_1
$ ho_3$	ρ_3	ρ_1	$ ho_0$	$ ho_2$	δ_2	δ_1	μ_1	μ_2
μ_1	μ_1	μ_2	δ_2	δ_1	$ ho_0$	$ ho_2$	$ ho_3$	ρ_1
μ_2	μ_2	μ_1	δ_1	δ_2	$ ho_2$	$ ho_0$	$ ho_1$	$ ho_3$
δ_1	δ_1	δ_2	μ_1	μ_2	ρ_1	$ ho_3$	$ ho_0$	ρ_2
δ_2	δ_2	δ_1	μ_2	μ_1	$ ho_3$	$ ho_1$	$ ho_2$	$ ho_0$

And this is a coset group with the following table:

	red	blue	green	black
red	red	blue	green	black
blue	blue	red	black	green
green	green	black	red	blue
black	black	green	blue	red

And since for every x in this group we have x^2 =identity of the group (in this case "red"), this group is isomorphic to the klein-4 group V.

Exercise. 30

False, Here is a counter example: Let $G = S_3$ and let $H = \{id, (23)\}, a = (123), b = (12)$. Then $a.H = b.H = \{(123)(12)\}$ While $H.a = \{(123)(13)\} \neq H.b$ since $H.b = \{(132)(12)\}.$

Exercise. 31

If H.a = H.b Now since , $H.b = \{h.b \mid h \in H\}$ and since $e \in H$ then we get $b \in H.b = H.a$ $\implies b \in H.a$.

Exercise. 32

True, since:

We know that it is enough to show that there intersection is non-empty:

Now since $a.H = b.H \implies b \in a.H$ (similar to above argument) $\implies b = a.h$ for some $h \in H$ then $b^{-1} = h^{-1}.a^{-1}$

 $\implies b^{-1} \in H.a^{-1}, \text{ but } b^{-1} \in H.b^{-1} \implies H.a^{-1} = H.b^{-1}$

Exercise. 33

False, and here is a counter example: Let $G = D_4$, and let $H = \{\rho_0, \mu_2\}$. Let $a = \rho_1$ then $a^2 = \rho_2$, and $b = \delta_2$ then $b^2 = \rho_0$, we have $a.H = b.H = \{\rho_1, \delta_2\}$, while $a^2.H = \{\rho_2, \mu_1 \text{ different form } b^2.H = \{\rho_0, \mu_2\}$.